翻訳と辞書
Words near each other
・ Genesee Falls, New York
・ Genesee Generating Station
・ Genesee Group
・ Genesee Hospital
・ Genesee Intermediate School District
・ Generator (Bad Religion album)
・ Generator (category theory)
・ Generator (circuit theory)
・ Generator (computer programming)
・ Generator (Foo Fighters song)
・ Generator (mathematics)
・ Generator (The Holloways song)
・ Generator function
・ Generator Gawl
・ Generator interlock kit
Generator matrix
・ Generator Rex
・ Generator Sound Art
・ Generator Tour
・ Generator X (band)
・ Generator zla
・ Generatrix
・ Generał
・ Generał broni
・ Generał brygady
・ Generał Nil
・ Generał. Zamach na Gibraltarze
・ Generałowo
・ GeneRec
・ GeneReviews


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Generator matrix : ウィキペディア英語版
Generator matrix

In coding theory, a generator matrix is a matrix whose rows form a basis for a linear code. The codewords are all of the linear combinations of the rows of this matrix, that is, the linear code is the row space of its generator matrix.
==Terminology==

If ''G'' is a matrix, it generates the codewords of a linear code ''C'' by,
:w = s ''G'',
where w is a codeword of the linear code ''C'', and s is any vector. A generator matrix for a linear (k, d )_q-code has format k \times n, where ''n'' is the length of a codeword, ''k'' is the number of information bits (the dimension of ''C'' as a vector subspace), ''d'' is the minimum distance of the code, and ''q'' is size of the finite field, that is, the number of symbols in the alphabet (thus, ''q'' = 2 indicates a binary code, etc.). The number of redundant bits is denoted by ''r = n - k''.
The ''standard'' form for a generator matrix is,
: G = \begin I_k | P \end,
where I_k is the ''k''×''k'' identity matrix and P is a ''k''×''r'' matrix. When the generator matrix is in standard form, the code ''C'' is systematic in its first ''k'' coordinate positions.
A generator matrix can be used to construct the parity check matrix for a code (and vice versa). If the generator matrix ''G'' is in standard form, G = \begin I_k | P \end, then the parity check matrix for ''C'' is
: H = \begin -P^ | I_ \end,
where P^ is the transpose of the matrix P. This is a consequence of the fact that a parity check matrix of C is a generator matrix of the dual code C^.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Generator matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.